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Abstract

For many data mining problems, obtaining labels is costly and time consuming, if not

practically infeasible. In addition, unlabeled data often includes categorical or ordinal

features which, compared with numerical features, can present additional challenges. We

propose a new unsupervised spectral ranking method for anomaly (SRA). We illustrate

that the spectral optimization in SRA can be viewed as a relaxation of an unsupervised

SVM problem. We demonstrate that the first non-principal eigenvector of a Laplacian

matrix is linked to a bi-class classification strength measure which can be used to rank

anomalies. Using the first non-principal eigenvector of the Laplacian matrix directly, the

proposed SRA generates an anomaly ranking either with respect to the majority class or

with respect to two main patterns. The choice of the ranking reference can be made based

on whether the cardinality of the smaller class (positive or negative) is sufficiently large.

Using an auto insurance claim data set but ignoring labels when generating ranking, we

show that our proposed SRA significantly surpasses existing outlier-based fraud detection

methods. Finally we demonstrate that, while proposed SRA yields good performance

for a few similarity measures for the auto insurance claim data, notably ones based on

the Hamming distance, choosing appropriate similarity measures for a fraud detection

problem remains crucial.
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Auto Insurance Fraud Detection
Using Unsupervised Spectral Ranking for Anomaly

1. Introduction

The main objective of the paper is to propose a method for fraud detection

by detecting anomaly of interdependence relation, captured by a kernel similarity,

among the feature variables. The method includes a new ranking scheme, with the

top of the ranked list indicating the most suspicious case, based on spectral analy-

sis of the Laplacian of the similarity kernel. To illustrate, the proposed method is

applied to both synthetic data sets and an auto insurance application.

Fighting against insurance fraud is a challenging problem both technically

and operationally. It is reported that approximately 21% ∼ 36% auto-insurance

claims contain elements of suspected fraud but only less than 3% of the suspected

fraud is prosecuted.1,2 Traditionally, insurance fraud detection relies heavily on

auditing and expert inspection. Since manually detecting fraud cases is costly and

inefficient and fraud need to be detected prior to the claim payment, data mining

analytics is increasingly recognized as a key in fighting against fraud. This is due

to the fact that data mining and machine learning techniques have the potential to

detect suspicious cases in a timely manner, and therefore potentially significantly

reduce economic losses, both to the insurers and policy holders. Indeed there is

great demand for effective predictive methods which maximize the true positive

detection rate, minimize the false positive rate, and are able to quickly identify

Preprint submitted to Journal of Finance and Data Science March 2, 2016
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new and emerging fraud schemes.

Fraud detection can be approached as an anomaly ranking problem. Anomaly

detection encompasses a large collection of data mining problems such as disease

detection, credit card fraud detection, and detection of any new pattern amongst

the existing patterns. In addition, comparing to simply providing binary classifi-

cations, providing a ranking, which represents the degree of relative abnormality,

is advanntageous in cost and benefit evaluation analysis, as well as in turning an-

alytic analysis into action.

If anomaly can be treated as a rare class, many methods for supervised rare

class ranking exist in the literature. RankSVM3 can be applied to a bi-class rare

class prediction problem. However, solving a nonlinear kernel RankSVM prob-

lem is computationally prohibitive for large data mining problems. Using SVM

ranking loss function, a rare class based nonlinear kernel classification method,

RankRC4,5, is proposed.

Unfortunately it may not be feasible or desirable to use supervised anomaly

ranking for fraud detection, since obtaining clearly fraudulent (and non-fraudulent)

labels is very costly, if not impossible. Even if one ignores human investigative

costs, it is quite common to find fraud investigators to differ in their claim as-

sessments. This raises additional reliability issues in data (specifically in labels).

In contrast, unsupervised learning has the advantages of being more economical

and efficient application of knowledge discovery. Moreover, the need to detect

fraudulent claims before payments are made and to quickly identify new fraud

schemes essentially rule out supervised learning as a candidate solution to effec-

tive fraud detection in practice. Therefore, an unsupervised anomaly ranking is

more appropriate and beneficial here.
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Standard unsupervised anomaly detection methods include clustering analysis

and outlier detection. Many outlier detection methods have been proposed in the

literature. Examples include k-Nearest Neighbor (k-NN) outlier detection, one-

class Support Vector Machine (OC-SVM) (including kernel-based), and density-

based methods, e.g., Local Outlier Factor (LOF). The effectiveness of these meth-

ods has been investigated in numerous application domains, including network

intrusion detection, credit card fraud detection, and abnormal activity detection

in electronic commerce. However, many standard outlier detection methods, e.g.,

one-class SVM, are only suitable for detecting outliers with respect to a single

global cluster, which we refer to as global outliers in this paper. An implicit as-

sumption in this case is that normal cases are generated from one mechanism and

abnormal cases are generated from other mechanisms. Density-based methods

can be effective in detecting both global outliers and local outliers; but assumption

here is that data density is the only discriminant for abnormality. Density-based

methods fail when small dense clusters also constitute abnormality. In addition,

density based methods, e.g., LOF, often require users to define a parameter which

specifies a neighborhood to compare the density. Tuning these parameters can

often be challenging.

Understandably, unsupervised learning is much more difficult than supervised

learning, since learning targets are not available to guide the learning process. In

practice, difficulty in unsupervised learning is further exacerbated by the addi-

tional challenge in identifying relevant features for unsupervised learning meth-

ods. Due to these challenges, the existing literature on auto insurance fraud detec-

tion typically formulates the problem as a supervised learning problem. 6,7

The literature on unsupervised auto insurance fraud detection is extremely
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sparse. To the best of our knowledge, it includes the self-organizing feature map

method8, and PRIDIT analysis9,10,11. PRIDIT is based on RIDIT scores and Prin-

cipal Component Analysis. We note these studies8,9,10,11 have been conducted

using the single Personal Injury Protection (PIP) data set9, which is provided by

Automobile Insurance Bureau (AIB) from Massachusetts. This data set has been

preprocessed by auditors and fraud detection inspectors. Specifically, data fea-

tures are the red flags specified by domain experts, with attribute values for fraud-

ulent instances in the data set typically smaller than that of the instances from

the non-fraudulent class. This corresponds to a preliminary ranking of fraudu-

lent suspiciousness. Thus it is reasonable to regard this as a partially supervised

learning, which is susceptible to the issues associated with label unreliability in

fraud detection. In addition, insurance claim data often consists of numerical,

ordinal, categorical, and text data. Consequently it will be difficult to apply the

self-organizing feature map method8, and PRIDIT analysis9,10,11 without first pre-

processing from domain experts. Moreover, when claim data consists of many

categorical attributes, it is reasonable to expect that data can form more than one

major cluster. This makes any single class based outlier detection method less

likely to be effective.

Based on spectral analysis, we propose a new unsupervised ranking method

for anomaly detection. Specifically we consider both rare class ranking, in which

anomaly is assessed with respect to a single majority class, as well as anomaly

ranking which is assessed with respect to more than one major pattern. We note

that the words, class and pattern, are used interchangeably in this paper.

Given a data set of input attributes, anomaly can be assessed with respect

to marginal attribute distributions as well as attribute dependence relationships,
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which can be either linear or nonlinear. Recently Gretton et al.12 and Song et al.13

have studied the use of kernels to measure nonlinear feature inter-dependence.

In this paper we focus on detecting anomaly in the attribute dependence using

similarity kernels, where the similarity constructed to capture dependence relation

among input attributes is assumed to be given. We then use spectral analysis to

compute the first bi-modal non-principal eigenvector to generate anomaly ranking.

We also compute the second non-principal eigenvector to assist visualization. In

addition, we apply several standard anomaly detection methods on auto insurance

problem and compare the performance with our proposed ranking algorithms.

The main contributions of this paper include:

• We observe a connection between an unsupervised Support Vector Machine

(SVM) optimization formulation and the spectral optimization. Specifically

we demonstrate that spectral optimization based on the Laplacian matrix

can be viewed as a relaxation of unsupervised SVM. Consequently the mag-

nitudes of eigenvector components approximate the degree of support in the

optimal bi-class separation function, which is used to yield the proposed

anomaly ranking.

• We demonstrate the unsupervised SRA for anomaly detection with respect

to a single majority class as well as multiple clusters using a few synthetic

data sets.

• Using the real auto insurance claim data6, we evaluate effectiveness of the

unsupervised SRA for detecting anomaly with respect to multiple major

patterns. We emphasize that here the anomaly ranking is generated without

using labels. We show that the proposed SRA performs significantly better
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than existing methods. In addition we demonstrate that, for this data set,

SRA achieves performance close to the in-sample training performance of a

random forest supervised classification, which can be considered a perfor-

mance upper bound.

Presentation of the paper is organized as follows. In §2, we summarize the

basic idea of spectral analysis and describe the interpretation of the eigenvector

components which motivates our ranking algorithm. In §3, we propose a new

method of unsupervised spectral ranking for anomaly (SRA). In §4, we review

and justify similarity measures for categorical attributes which are used in our

computational investigation. We present and discuss the results from the proposed

ranking method for the auto insurance claim data in §5. Concluding remarks are

given in §6

2. Spectral Analysis and Clustering

Spectral clustering14 has become a widely used clustering technique, often

outperforming traditional clustering techniques such as k-means and hierarchical

clustering. Before proposing our ranking method, we first briefly review the spec-

tral clustering technique.

The main objective of clustering is to partition data into groups so that sim-

ilarity between different groups is minimized. Hence similarity based clustering

can be modeled as a graph cut problem. An undirected graph G = (V,E) is used

to represent the data set and pairwise similarity, with vertices V = {v1,v2, ...,vn}

corresponding to data instances and an adjacency matrix W = (Wi j) specifying

pairwise similarities, where Wi j ≥ 0 is the similarity between vi and v j.

Let d be the degree vector of vertices, with di =
∑

j Wi j, and D be the diagonal
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matrix with d on the diagonal. From the degree matrix D and the weighted ad-

jacency matrix W , a Laplacian matrix, which plays an important role in spectral

clustering computation, is defined. Although there are variations in the definition

of Laplacian, the relevant definition to our discussion in this paper is the symmet-

ric normalized Laplacian15 L = I − D−1/2WD−1/2 .

The key idea of a spectral clustering algorithm is to determine clustering mem-

bership of data instances by applying a simple clustering technique, e.g., k-means,

to a small subset of eigenvectors of a graph Laplacian matrix.16,15

Assume that the eigenvalues of the Laplacian L are

λ0 ≤ λ1 ≤ ·· · ≤ λn−1

and g∗k is an eigenvector associated with λk, k = 0, · · · ,n − 1. Let e be a n-by-1

vector of ones. Since LD
1
2 e = 0 and L is positive semidefinite, g∗0 = D

1
2 e is the

principal eigenvector associated with the minimum eigenvalue λ0 = 0. Therefore,

the first non-principal eigenvector solves

min
g∈<n

gT Lg

subject to gT g∗0 = 0 (1)

gT g = υ

and the kth non-principal eigenvector solves

min
g∈<n

gT Lg

subject to gT g∗i = 0, i = 0, · · · ,k − 1 (2)

gT g = υ
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where υ =
∑n

i=1 di.

From g∗0 = D
1
2 e, each non-principal eigenvector g∗i satisfies

(D
1
2 e)T g∗i = 0.

Thus each eigenvector g∗i always contains both positive and negative components,

which we can group into a non-negative class C+ = { j : (g∗i ) j ≥ 0} and a negative

class C− = { j : (g∗i ) j < 0}.

A typical motivation of spectral clustering is that the spectral optimization

problem (1) can be regarded as a relaxation of an integer programming problem

modeling a normalized graph 2-cut problem. We refer an interested reader to14

for a more detailed discussion. A spectral clustering based on m eigenvectors

can be regarded as a m-step iterative bi-clustering method, in which each succes-

sive iteration looks for a bi-clustering in the space orthogonal to the first (m − 1)

bi-clustering eigenvector space. To determine clustering membership from the

eigenvectors of a Laplacian matrix, another clustering method, e.g., k-means, is

subsequently applied to the eigenvectors. Clustering methods such as k-means

typically require the number of clusters to be specified a prior.

Instead of determining cluster membership, our goal in this paper is to develop

an anomaly ranking method. To motivate, we first investigate information which is

potentially present in the eigenvector components. Specifically we show next that

optimization problem in (1) can be considered a relaxation to the unsupervised

SVM.

Assume that we are given the data instances without labels. For unsupervised

SVM, the goal is to find the optimal label assignment such that, the optimal hy-

perplane from supervised kernel SVM, using the assigned labels, has the maximal

8
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margin.

Formally, given a feature mapping φ(x) ,we want to solve the following nested

minimization problem:

min
yi∈{±1}

{
min

w,ξ,b,yi(wTφ(xi)+b)≥1−ξi,ξi≥0

1
2
‖w‖2

2 +C
m∑

i=1

ξi

}
(3)

Due to the integer constraints on yi, (3) is a NP-hard problem.17

Let K = (Ki j), Ki j = φ(xi)Tφ(x j), i, j = 1, · · · ,m, be the kernel matrix and Y =

diag(y). The inner convex optimization problem satisfies strong duality and has

the equivalent dual formulation

max
0≤αi≤C
yTααα=0

−
1
2
αααTY KYααα+ eTααα (4)

Replacing the inner minimization by its dual problem, we have the following

equivalent minmax problem

min
yi∈{±1}

max
0≤αi≤C
yTααα=0

−
1
2
αααTY KYααα+ eTααα (5)

Let z ∈ Rm where

zi = αi · yi, i = 1, · · · ,m

It immediately follows that

αααTY KYααα = zT Kz, and yTααα = eT z

Moreover, for any αi 6= 0, we have

yi = sign(zi), i = 1, · · · ,m (6)
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Consequently

eTα = eT |z|

Therefore, given y, solution to (4) is one of local maximizers of

max
z

eT |z|− 1
2

zT Kz

subject to eT z = 0, (7)

|z| ≤C

Note that the objective function in (7) is no longer concave and (7) has many local

maximizers. Let

Z∗ =

{
z∗ : z∗ = augmax eT z=0

|z|≤C
eT |z|− 1

2
zT Kz

}

Now consider the following simpler problem

min
z

−
1
2

zT Kz

subject to eT z = 0, (8)

|z| ≤C

We note that (8) remains an NP-hard problem due to the concave objective func-

tion and rectangular constraints.18 Assume K is positive definite in the space

{z : eT z = 0}. Then all local minimizers of (8) are at the boundary of |z| ≤ C

Intuitively, each maximizer of (7) is created by moving from the origin into a

quadrant in <n, from the combined values of the first increasing term eT |z| and

the second decreasing term −
1
2zT Kz. For the unsupervised SVM, the main task

is to assign the label y to determine the minimum of local maximums. In other

10
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Figure 1: Graphical illustration of eT |z|, −
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2zT Kz, and eT |z|− 1

2zT Kz
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words, we want to determine the quadrant at which the global optimal solution

locates. Assuming moving away from the origin in contours of eT |z|, the opti-

mal label assignments y for the minmax objective function (5) corresponds to the

quadrant along which the objective function −
1
2zT Kz decreases the fastest. This

suggests we can obtain a reasonable approximation to the optimal label assign-

ment by computing the minimum of −
1
2zT Kz under the same constraints, i.e., (8)

is a reasonable approximation to the unsupervised SVM (5). Figure 1 illustrates

this motivation in the two dimensional case. Subplot (a), (b), and (c) graph possi-

ble shapes of functions eT |z|, −
1
2zT Kz, and eT |z|− 1

2zT Kz respectively.

Next we show that the spectral optimization (1) is a reasonable approxima-

tion to (8) (and consequently to unsupervised SVM (5)). Denoting z = D
1
2 g,

K = D−1WD−1, and ignoring the constant υ in the objective function, spectral op-

timization (1) is equivalent to

min
z∈<m

−zT Kz

subject to eT z = 0

zT D−1z = υ.

Assuming K is positive definite, the ellipsoidal equality constraint can be replaced

by an inequality constraint

min
z∈<m

−zT Kz

subject to eT z = 0 (9)

zT D−1z≤ υ

because the ellipsoidal constraint in (9) should be active at a solution. Assuming
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K = D−1WD−1, C = υ · d 1
2 , and approximating the rectangular constraint by the

ellipsoidal constraint, problem (9) becomes an approximation to the optimization

problem (8). This suggests that the normalized spectral optimization problem (1)

can be regarded as an approximation to the unsupervised SVM problem (5).

The optimal separating hypothesis from an unsupervised SVM has the form

f (x) =

 m∑
j=1

y∗jα
∗
j K(x,x j) + b∗


where the coefficient of the bi-class separating optimal decision function α∗j rep-

resents a measure of support from the jth data point on the two class separation

decision. Since the first non-principal eigenvector of the normalized spectral clus-

tering z∗ yields an approximation |z∗| ≈α∗ and SIGN(z∗)≈ y∗, |z∗j | also provides a

measurement of the jth data point’s support on the separation. However, because

of the use of the ellipsoidal constraint rather than rectangular constraints and other

approximations, the eigenvector components are mostly nonzero, yielding a con-

tinuous measure of support in this two clusters separation.

3. A New Spectral Ranking for Anomaly

In the standard spectral analysis, k-means clustering is typically applied to

non-principal eigenvectors to determine clustering memberships. Our discussion

in §2 suggests that components of a non-principal eigenvector z∗ have meaning

beyond indicating cluster membership. In fact |z∗| provides a bi-class clustering

strength measure in the optimal bi-class clustering in the high dimensional feature

space according to the assumed similarity.

We now graphically illustrate the information in the component of the first

non-principal eigenvector z∗ and motivate how the information can be used to
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rank anomaly. To aid visualization, we graph both components of the first and

second non-principal eigenvectors, with each point in this 2-dimensional space

corresponding to one original data instance. Figure 2 presents a visual illustration

of the clustering strength information in the first non-principal eigenvector for a

balanced two-cluster data set. We consider the Laplacian corresponding to the

Gaussian kernel with bandwidth σ = 1 as the similarity. Subplot (a) graphs the

original 2-D data while Subplot (c) graphs the components of the first and second

non-principal eigenvectors. To see how the original data points correspond to

points in the eigenvector space, we assign each data point in the dimension of

the first non-principal eigenvector, z∗ = D1/2g∗1, a unique color with the darker

intensity corresponds to a larger magnitude in the first non-principal eigenvector

component. The effect in the original data space is visualized in Subplot (b). The

color of the data point in Subplot (b) is the same as the color of the corresponding

point in the eigenvectors in Subplot (c). The colormap is shown at the right side of

Subplot (b) and Subplot (c) in Figure 2. We also graph the probability density of

the first non-principal eigenvector in Subplot (d), which clearly indicates presence

of two clusters in this case.

From Figure 2, it can also be observed that the bi-class clustering strength |z∗|

of global outliers, typically corresponding to the color green and yellow, is the

smallest. In addition, data points which are closer to the other cluster, colored

in light red and light blue, have approximately the medium bi-class clustering

strength |z∗|. This suggests that they offer less information in defining the clusters

than that of the cluster cores, which are colored in dark red and dark blue.

In Figure 3 we consider a second synthetic example which includes major

clusters in combination with small clusters. Subplots (a), (b), (c) and (d) are simi-
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larly generated as in Figure 2. From Figure 3, it can be observed that data points in

two smaller clusters lie closer to the origin and are depicted in yellow and green.

In addition, similar to Figure 2, we observe that global outliers mostly have the

smallest clustering strength support and lie near the origin. In addition, data points

which are closer to the other cluster offer less information in defining the clusters

and consequently the corresponding clustering strength, |z∗|, is smaller. We can

also see, from the colormap, that the edge of the major clusters has relatively

smaller clustering support strength (|z∗|) than that of the core of the major clus-

ters. Note that the probability density plot for the first non-principal eigenvector

in Subplot (c) now has three modes, which indicates presence of additional small

clusters.

Figure 2 and 3 demonstrate that the first non-principal eigenvector indeed con-

tains significant bi-class clustering support strength information, which can be

used to produce ranking for anomaly, either global outliers or small anonymous

patterns relative to major normal clusters. Using the cluster support strength in-

formation in the non-principal eigenvector, we now propose a new method of

Spectral Ranking for Abnormality (SRA), which is summarized in Algorithm 1.

We consider both the case when multiple major patterns exist and the case when

there is only one major pattern for the normal class with smaller clusters repre-

senting abnormality (possibly also with global outliers). The proposed algorithm

allows a choice of the reference in making the assessment of anomaly ranking.

When ranking anomaly in referencing to multiple major classes, we define the

anomaly score as f∗ = ‖z∗‖∞− |z∗|. If the minority class does not have a sufficient

mass, one can choose to assess anomaly likelihood with respect to a single ma-

jority class and ranking is generated suitably with this view. Otherwise, anomaly

16



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

is assessed with two main patterns. Specifically, let C+ = {i : (g1)∗i ≥ 0} and

C− = {i : (g∗1)i < 0} denote data instance index sets corresponding to non-negative

and negative value in g∗1 respectively. Assume that an a priori upper bound for

the anomaly ratio χ is given. If min
{
|C+|

n , |C−|
n

}
≥ χ, then neither the set C+ nor

C− is considered as an anomaly class and SRA outputs ranking f∗ = ‖z∗‖∞ − |z∗|

with respect to both the positive and negative majority classes. Otherwise, SRA

outputs anomaly ranking f∗ with respect to a single majority class, with f∗ equal

to either z∗ or −z∗ depending on which of the two classes has a smaller cardinal-

ity. If the distribution of component values of the first non-principal eigenvector

is a relatively balanced bi-modal, |C+| ≈ |C−|, SRA outputs anomaly ranking with

respect to multiple patterns.

For the example depicted in Figure 3, the score f∗ yields larger positive values

for points closer to the origin, corresponding to global outliers or anonymous

small clusters. The core of the major clusters have the smallest scores. The scores

for the boundaries of the major clusters are in between the scores of the global

outliers and the cores of the major clusters.

Figure 4 illustrates the case when there is only one major pattern for the nor-

mal class with anomaly expressed as small clusters and global outliers. For this

example, the appropriate ranking score is f∗ = z∗, since C+ is the minority class.

The core of the major cluster has the smallest scores. In addition, global outliers

(e.g., points in light red and yellow) have scores in between that of the cores of

the major class and the minor class.

One of the main advantages of the proposed SRA over existing anomaly rank-

ing methods is that SRA can distinguish simultaneously small clusters and global

outliers from majority patterns. The existing methods typically require a user to
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(d) Kernel Density Estimation

Figure 3: Visualizing Information in the First Non-principal Eigenvector: two
major patterns and small clusters
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Figure 4: Visualizing Information in the First Non-principal Eigenvector: one
major pattern and anonymous small clusters
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target one instead of both cases. In addition, our proposed SRA distinguishes

edges of the main clusters from the core of the main clusters. Finally, SRA can be

easily applied to both cases when there are multiple patterns for the normal class

and when only one major pattern exists.

Algorithm 1: Spectral Ranking for Abnormality (SRA)
Input: W : an n-by-n similarity matrix W .

χ: a ratio upper bound on anomaly
Output: f∗ ∈ <n: a ranking vector with a larger value representing more

abnormal
mFLAG : a flag indicating the type of the ranking reference

begin
Form Laplacian L = I − D−1/2WD−1/2 ;

Compute z∗ = D
1
2 g∗1 and g∗1 (the first non-principal eigenvector for L);

Let C+ = {i : z∗i ≥ 0} and C− = {i : z∗i < 0};
if min{ |C+|

n , |C−|
n } ≥ χ then

mFLAG = 1, f∗ = max(|z∗|) − |z∗|, %ranking w.r.t. multiple patterns;
else if |C+|> |C−| then

mFLAG = 0, f∗ = −z∗, %ranking w.r.t. a single major pattern;
else

mFLAG = 0, f∗ = z∗, %ranking w.r.t. a single major pattern ;
end

end

4. Similarity Measures for Categorical Data

In practice, representation of human activities and behavior often leads nat-

urally to categorical and ordinal data. Since most existing data mining methods

solely focus on numerical values, a common preprocessing technique for cate-

gorical data expands categorical attributes into a set of binary indicators and then

use the Euclidean distance to measure the similarity. Unfortunately this simple
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method often fails to capture relevant information of a data set, e.g., nominal

value frequency distribution, and can potentially create distortion. Indeed we fail

to obtain any meaningful results on the auto insurance data set considered in this

paper, when categorical data is treated directly by performing binary expansion

and applying existing clustering and outlier detection methods.

A more meaningful treatment for categorical data is to select a similarity mea-

sure to capture relationship between input categorical attributes. Indeed similarity

measures have been studied for more than a century and hundreds of similar-

ity measures exist.19 These measures can be classified into two types, nominal

value definition driven and nominal value distribution driven similarities. Next

we briefly review the similarity measures which are used in this paper for the auto

insurance fraud detection problem.

Nominal value definition driven similarity is defined directly from the specifi-

cation of the attribute nominal values. For auto insurance fraud detection, matches

and mismatches in nominal values of categorical attributes form an intuitive basis

for comparing claim patterns. Hence we mainly focus on the simple overlap-

ping similarity and its derived kernels. We assume that the data set comes from

sampling of random n-dimensional categorical vector D, with the ith attribute Di

having |Di| distinct nominal values, i = 1,2, · · · ,n.

Overlapping Similarity

Given two n-dimensional categorical attribute vector x and x̃, overlapping sim-

ilarity is given by

sO(x, x̃) = 1 − dH(x, x̃)
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where dH(x, x̃) is the Hamming distance defined as the number of attributes that x

and x̃ do not match divided by the total number of attributes:

dH(x, x̃) =

n∑
i=1

δ(xi, x̃i)

n
(10)

where

δ(xi, x̃i) =

 1, xi 6= x̃i

0, xi = x̃i

Overlapping similarity is in fact a valid kernel.20 Replacing the Euclidean

distance in a standard Gaussian kernel by the Hamming distance, we immediately

obtain a Gaussian kernel below derived from the Hamming distance,

kGH(x, x̃) = e−
dH (x,x̃)

2σ2 (11)

where σ > 0 is a constant kernel width parameter.

Adaptive Gaussian Kernel

In the Gaussian Hamming Kernel (11), a single bandwidth σ is applied to ev-

ery data instance. It has been argued that clustering performance can be improved

using an adaptive bandwidth.21 Considering the number of nominal values in each

attribute, a weighted Hamming distance has also been proposed.21

dWH(x, x̃) =
n∑

i=1

δ(xi, x̃i)
|Di|

.

Corresponding to the weighted Hamming distance, one can consider an adaptive

kernel

kWH(x, x̃) = e−
dWH (x,x̃)
σ(x,x̃) (12)
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where σ(x, x̃) is a data driven adaptive bandwidth determined by a fixed number

of nearest neighbors of the data instance x and x̃.

Hamming Distance Kernel

For categorical data, Hamming distance kernel22 has been proposed, which

can be viewed as a variant of the string kernel23.

Let Dn be the cross product over all n input attribute domains. The Hamming

distance kernel is defined by implicitly considering the |Dn|-dimensional attribute

space in which each possible nominal value combination represents one dimen-

sion. For each u∈Dn, representing one dimension in the |Dn|-dimensional kernel

attribute space, an explicit mapping θu(x) is defined to map a data instance x onto

this dimension. For any given original input attributes x and x̃, the kernel func-

tion k(x, x̃) equals the inner product of the mapped attributes {θu(x),u ∈ Dn} and

{θu(x̃),u ∈ Dn}. More specifically, let Di be the domain of the ith attribute. For

each u ∈ Dn, given a categorical instance x = (x1, ...,xn), xi ∈ Di, we define an

explicit mapping:

θu(x) = λdH (u,x) (13)

where λ ∈ (0,1) is a damping parameter and dH(·) is the Hamming distance (10).

Note that θu(x) is only one dimension of the kernel feature space. Thus the Ham-

ming distance kernel between instances x and x̃ is:

kH(x, x̃) =
∑

u∈Dn

θu(x)θu(x̃) (14)

Directly computing the Hamming distance kernel has an exponential computa-

tional complexity.22 Fortunately a dynamic programming technique can be ap-

plied, which allows this kernel to be computed efficiently following a recursive
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procedure.22

While evaluating similarity between a pair of instance x and x̃, the Hamming

distance directly compares nominal values of x and x̃ to determine the number of

different values. In contrast, a Hamming distance kernel assesses the similarity

between x and x̃ in referencing to all possible nominal value combinations of

the categorial attribute. Consequently, a Hamming distance kernel can capture

more information than the Hamming distance based on the simple overlapping

similarity.

DISC Similarity

To illustrate the effect of the similarity measure on the performance of a rank-

ing method, we consider in this paper DISC (Data-Intensive Similarity Measure

for Categorical Data)24, which is an example of distribution driven similarity

measure for categorical data. Distribution driven similarity is determined from

distributions of occurring feature values. This type of similarity measures may

adjust similarity for rare nominal values, which introduces additional information

in representing the relationship between data instances. This can potentially de-

tect different patterns in comparison to simpler feature definition driven similarity

measures.

5. Performance Evaluation for SRA

To evaluate effectiveness of the proposed SRA for anomaly detection, we ex-

amine the Receiver Operating Characteristic (ROC)25,26,27 to obtain a class skew

independent performance measure. We regard the anomaly cases as the positive

class and the normal cases as the negative class. Assume that n+ and n− denote

the total number of instances in the positive and negative class respectively. The
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ROC graph is obtained by plotting the true positive rate (number of true positives

divided by n+) against the false positive rate (number of false positives divided by

n−), as the threshold level is varied. The true positive rate (also known as sensitiv-

ity) is one evaluation criterion and the false positive rate (or one minus specificity)

is the second evaluation criterion.

The ROC curves (or true-positive and false-positive frontiers) depict the trade-

off between the two criteria, benefits (true positive) and costs (false positives), for

different choices of the threshold. Thus it does not depend on a priori knowledge

to combine the two objectives into one. A ROC curve that dominates another

provides a better solution at any cost point and it corresponds to a higher area

under the curve (AUC). The AUC yields the probability that the generated ranking

places a positive class sample above a negative class sample, when the positive

sample is randomly drawn from the positive class and the negative class sample

is drawn randomly from the random class respectively.28 Thus, the ROC curves

and AUC can be used as a criteria to measure how well an algorithm performs on

certain data sets. Subsequently, we will use AUC and ROC curves as performance

evaluation measures to compare different methods.

Synthetic Examples

To illustrate, we first present, in Subplot (a) in Figure 5, performance of SRA

on the synthetic data sets depicted in Figure 2–4. For the synthetic data set 1 & 2,

there are multiple main patterns which can be deduced from density plots of the

first non-principal eigenvector; consequently mFlag is set to 1. For the synthetic

dataset 3, mFlag is set to zero to reflect the observation that the positive class

does not have sufficient instances. Here the performance is assessed regarding the

small cluster and outliers as constituting anomaly. We observe very high AUCs
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0.95, 0.99, 0.99, respectively for the synthetic data set 1, 2 & 3.

Auto Fraud Detection

To further evaluate effectiveness of the proposed SRA, we now apply it to

a fraud detection problem from auto insurance claim data, which has been used

for the supervised detection6. This is the only publicly available auto insurance

fraud detection data that we can find from the academic literature. This data set,

which is provided by Angoss KnowledgeSeeker Software, consists of 15420 claim

instances from January 1994 to December 1996. The data set consists of 6%

fraudulent labels and 94% legitimate labels, with an average of 430 claims per

month. In addition, the data set has 6 ordinal features and 25 categorical attributes.

Feature examples include base policy, fault, vehicle category, vehicle price (6

nominal values), month of accidents, make of the car, accidental area, holiday, and

sex. Intuitively, anomaly in this case should be assessed with respect to nominal

value combinations. Consequently the Hamming distance and Hamming distance

based kernels are reasonable similarities to use.

This data set is used to assess achievable prediction quality using supervised

learning.6 Since labels for auto insurance claims are generally not available at the

detection time, here we apply the proposed unsupervised SRA to this claim data

set. In other words,ranking is generated without using labels and the labels are

used only for performance evaluation.

When performing unsupervised fraud detection on this data, we recall two

major challenges which have been briefly mentioned in previous sections. Firstly,

most of the features in this dataset are categorical or ordinal. Secondly, unlike

common anomaly detection problems, the claim data forms multiple patterns.

Consequently a single cluster based global outlier detection method generally pro-
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duces unsatisfactory results.

For comparison, we include performance of two popular unsupervised outlier

detection methods, one-class SVM (OC-SVM) and Local Outlier Factor (LOF).

The implementation of OC-SVM comes from LIBSVM library.29 The implemen-

tation of LOF comes from Ddtools library.30 In addition, we train supervised

Random Forest (RF) on the full dataset, since the supervised training accuracy

of RF can then be used as an upper bound for evaluations of unsupervised learn-

ing methods. For the RF computational results, the number of trees built is 500

and the number of features used for building each tree is 6. The resulting votes are

used as the decision value. The implementation of RF comes from the Treebagger

class in Matlab software.

We note that, the only parameter required by SRA is the upper bound on the

anomaly rate, which we believe that it is reasonable to expect a crude approxi-

mation at least in practice. In contrast, LOF requires a parameter for the number

of neighborhood nLOF and OC-SVM requires an additional width parameter µSVM.

Unfortunately it is far more difficult to determine appropriate values for these pa-

rameters. This can present more challenges for unsupervised learning since there

is no mechanism to tune their values. For the auto insurance data set considered

here, since |C+| ≈ |C−| for all the similarities we have experimented with, subse-

quently we always report ranking with regard to multiple patterns, i.e., mFLAG=1.

Consequently the choice of χ is practically irrelevant in this case.

Comparisons with LOF and OC-SVM Using Overlapping Similarity

Subplot (b) in Figure 5 presents ROC curves for SRA, LOF and OC-SVM,

using overlapping similarity. In addition, ROC of the supervised RF is also in-

cluded as a benchmark. For LOF and OC-SVM however, parameter choices are
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Table 1: Summary of the AUCs for the Auto Insurance Fraud Detection Data Set

Automobile Fraud Detection Data Set

Method OS
AGK HDK

DISCβ λ
10 100 1000 3000 0.5 0.8

LOF nlo f

10 0.53 0.5 0.52 0.58 0.64 0.52 0.53 0.55
100 0.51 0.51* 0.54 0.58 0.67 0.51 0.52 0.57
500 0.53 0.52* 0.55 0.59 0.68 0.51 0.51 0.57
1000 0.53 0.52* 0.53 0.59 0.69 0.5 0.5 0.56
3000 0.5 0.58* 0.55 0.58 0.69 0.54* 0.55* 0.53

OC-SVM µsvm

0.01 0.51* 0.53* 0.51* 0.54 0.59 0.51* 0.52* 0.53*
0.05 0.51* 0.53* 0.51* 0.55 0.59 0.52* 0.53* 0.52*
0.1 0.51* 0.54* 0.51* 0.55 0.59 0.53* 0.54* 0.56*

SRA mFLAG 1 0.73 0.74 0.74 0.66 0.74 0.74 0.74 0.66

For entries marked by *, AUC reported is one minus the actual AUC (≤ 0.5).
OS:Overlapping Similarity, AGK: Adaptive Gaussian Kernel

HDK:Hamming Distance Kernel, DISC: DISC Similarity
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lof
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Supervised RF, AUC=0.83

Upper Bound

(b) ROC Curves

Figure 5: Subplot (a) Displays ROC and AUC of SRA for Synthetic Examples.
Subplot (b) Compares SRA with LOF and OC-SVM on Auto Insurance Data Set
Based on the Overlapping Similarity. SRA clearly dominates LOF and OC-SVM.
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Upper Bound

(b) ROC Curves

Figure 6: Comparisons Based on an Adaptive Gaussian Kernel with β = 100

important and we report the optimal AUCs among different parameters we have

experimented with. It can be observed that the ROC from SRA clearly dominates

those from LOF and OC-SVM using overlapping similarity.

Table 1 summarizes the AUCs from different unsupervised methods using dif-

ferent similarities. Here we use β to denote the neighborhood size parameter of

the adaptive Gaussian kernel in (12). The results indicate that SRA outperforms

LOF and OC-SVM significantly on all similarities considered here.

Next we present more detailed discussions on the comparison in terms of

ROCs for different kernels and different methods. Unless otherwise noted, we

always include performance of the supervised RF to show the upper bound.

Using Adaptive Gaussian Kernel with Weighted Hamming Distance.

Figure 6 shows ROC curves for SRA, LOF, OC-SVM achieved with the Adap-

tive Gaussian Kernel with the weighted Hamming distance and neighborhood size

β = 100. We observe that AUC for each of SRA, LOF and OC-SVM is improved.

We conjecture that the improvement comes from the facts that the weighted Ham-

29



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

−2 −1 0 1 2
−3

−2

−1

0

1

2

1st Non−principal Eigenvector

2n
d 

N
on

−
pr

in
ci

pa
l E

ig
en

ve
ct

or

(a) Visualization of z∗1 = D1/2g∗1 and z∗2 =
D1/2g∗

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e 
P

os
iti

ve
 R

at
e

False Positive Rate

 

 

OC−SVM (ν
svm

=0.01), AUC=0.52

LOF (k
lof

=100), AUC=0.52

SRA(mFLAG=1), AUC=0.74
Supervised RF, AUC=0.83

Upper Bound
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Figure 7: Comparisons Based on a Hamming Distance Kernel with λ = 0.8

ming distance is a better distance measures than Hamming distance since infor-

mation on the number of distinct value in each feature is also included. From

Figure 6 (a), we also observe that, using the adaptive Gaussian kernel, clusters are

also more distinct comparing to the overlapping kernel. Note that in Figure 6 (a),

Figure 7 (a), and Figure 8, red points are the corresponding points of fraudulent

cases in the space of first and second non-principal eigenvectors.

Using the Hamming Distance Kernel

The Hamming distance kernel is defined based on the overlapping similarity

measure. However, as discussed previously, a Hamming distance kernel can cap-

ture more information than the simple Hamming distance (overlapping similarity).

Recall that, while Hamming distance directly compare nominal values of a pair

of data instances to determine the number of different values, a Hamming dis-

tance kernel assesses the similarity between the pair in referencing to all possible

nominal value combinations of categorial attributes. From Figure 7 for which the

Hamming Distance Kernel is used, we observe a more complex cluster structure
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Figure 8: Overlapping Similarity and DISC Similarity:using DISC

, even though SRA achieves a similar 0.74 AUC. Although SRA achieves similar

AUCs when λ value is changed, different clustering structures are observed.

Using DISC Similarity

We have also experimented with a few distribution driven similarity measures,

e.g., Lin similarity19; the results are consistently worse (less than 0.6 AUC) in

comparison to overlapping, adaptive Gaussian and Hamming distance kernel. The

only exception is that of the DISC similarity measure, for which AUC = 0.52

for OC-SVM (µsvm = 0.05), AUC= 0.56 for LOF (nlo f = 1000), AUC= 0.66 for

SRA (mFLAG=1). Once again, performance of SRA significantly dominates LOF

and OC-SVM. Figure 8 compares cluster structure revealed using overlapping

similarity and DISC similarity respectively. We observe here that different cluster

structures are revealed when different similarity measures are used.

Understanding Cluster Structure: Further Validation of SRA Ranking

To further justify SRA ranking generated, we further investigate the cluster

structure revealed. Specifically we analyze significant features based on which
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highly ranked claims are different from the majority. If deviation from the ma-

jority is based on features which are likely to lead to fraud, this provides support

for the generated ranking. As an example, we consider clusters identified using

Hamming kernel with λ = 0.8.

Figure 9 is identical to Subplot (a) in Figure 7, except that clusters formed in

the space of the first and second non-principal eigenvectors are explicitly labeled.

We report the fraud ratio of each cluster in Table 2. It can be seen from the plot

and the table that 92% of the fraudulent cases actually reside in the clusters 4, 6

and 7. These are also the clusters that have relatively high anomaly score from

SRA. Hence we further analyze each cluster, especially the one with the highest

fraud ratio.
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-1.5 -1 -0.5 0 0.5 1 1.5 2

2n
d 

N
on

-p
ri

nc
ip

al
 E

ig
en

ve
ct

or

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

4

3

6 7

5

1

Figure 9: Clusters with Labels

Cluster n n− n+ fraud %
1 723 722 1 0.14%
2 3261 3228 33 1.01%
3 4266 4231 35 0.82%
4 6423 5622 761 11.85%
5 206 203 3 1.46%
6 340 294 46 13.53%
7 201 157 44 21.89%

Table 2: Cluster Summary Information

To gain additional insight, we build a standard CART (classification and re-

gression tree) to determine the decision rule for each cluster, with the pruning rule

that the number of data points at a leaf node is no less than 15. The training labels

for CART are the cluster labels we manually identify from the first and second

non-principal eigenvectors and the training data is the whole data set. Figure 10

presents the computed CART tree.

We discover the following rules from Figure 10 for the cluster 4, 6 and 7, for
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Base
Policy

Fault

Vehicle
Category

Cluster3
Gini:0.0005

(4263)

sport

Cluster7
Gini:0.27

(19)

utility

policy holder

Cluster1
Gini:0.01

(727)

third party

liability

Fault

Vehicle
Category

Vehicle
Category

Cluster7
Gini:0.02

(186)

sport

Cluster6
Gini:0.01

(336)

utility

sport
or utility

Cluster4
Gini:0.001

(6426)

sedan

policy holder

Vehicle
Category

Number
of

Previous
Claims

Cluster2
Gini:0.12

(15)

no < 4

Cluster5
Gini:0.18

(19)

no >= 4

utility

Vehicle
Category

Cluster5
Gini:0.00

(184)

sport

Cluster2
Gini:0.00

(3245)

sedan

sport
or sedan

third party

all perils or collision

Figure 10: Decision Tree: rules leading to the colored clusters

which SRA has assigned high ranks:

• If the insurance policy is for collision or all perils and it is the policy holder

who causes the accident (policy holder at fault), the corresponding claim

belongs to the clusters with high fraud ratio (cluster 4, 6, & 7).

• If the insurance policy is for liability and/or and it is not the policy holder

who causes the accident (third party at fault), the corresponding claim be-

longs to the other clusters (cluster 1, 2, 3, and 5).

• Following the first rule, if the policy holder drives sports car, the corre-

sponding claim belongs to cluster 7. If the policy holder drive utility car,

the corresponding claim belongs to cluster 6. Otherwise, the corresponding

claim belongs to cluster 4.
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Indeed these rules identify cases with reasonable suspiciousness. In addition,

from training supervised random forest in the previous section, we have discov-

ered that the three most important features in classify fraudulent cases against

legal cases are base policy, car types and fault. These three features are actually

the features used in defining the clusters. This analysis supports that the ranking

from SRA is meaningful and reasonable.

6. Concluding Remarks

In this paper, we propose a spectral ranking method for anomaly detection. We

observe that the spectral optimization problem can be interpreted as an approxi-

mation to an unsupervised support vector machine and a non-principal eigenvec-

tor can be used to derive a ranking vector directly. Based on this information in

an eigenvector, a data instance is more likely to be an anomaly if its magnitude

is smaller, when both positive and negative classes cannot be ruled as abnormal

based on instance count percentages. Furthermore, we allow a choice of the refer-

ence in the assessment of anomaly ranking. If the minority class does not have a

sufficiently large count percentage, one can choose to assess anomaly likelihood

with respect to a single majority class and ranking is generated suitably with this

view. Otherwise, anomaly is assessed with two main patterns.

As an illustration of the proposed SRA, we consider the challenging auto fraud

insurance detection problem based on a real claim data set. Since obtaining labels

is time consuming, costly, and error prone in practice, we model the problem as

unsupervised learning and ignore labels when generating ranking using SRA, even

though fraud labels are available for this particular data set. Since data attributes

are categorical, we assess anomaly in nominal value combinations which lead to

suspiciousness of the claim. We choose the Hamming distance and Hamming
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distance based kernels in generating spectral ranking for this data set. SRA yields

an impressive 0.74 AUC, particularly considering that the supervised RF generates

0.83 AUC, which can be regarded as an upper bound.

Finally we note that, although we focus in this paper on applying the proposed

method for the auto insurance fraud detection, it can be applied to other anomaly

detection problems as well. We recognize however that appropriate choice of a

similarity measure may depend on the specific application context.
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